

Mathématiques Activité Informatique Théorème de Pythagore et Trigonométrie

Vous allez élaborer une feuille de tableur qui vérifie si un triangle est rectangle étant données les longueurs de ses trois côtés.

De plus, si le triangle est rectangle, les mesures de ses angles aigus seront indiquées.

Vous construirez ensuite l'un de ces triangles sur GeoGebra.

1. Démarrer le tableur

2. Recopier sur votre feuille de calcul :

	А	В	С	D
1	Premier côté	5		Carré du côté le plus long:
2	Deuxième côté	13		Somme des carrés des deux autres côtés:
3	Troisième côté	12		

3. En cellule E1, nous allons calculer le carré du côté le plus long.

Taper la formule : =MAX (B1:B3) (2) ----> Puissance 2

Q1 : Trouver une formule qui permettra de calculer la somme des carrés des deux autres côtés : ______

En quelle cellule faut-il taper cette formule ? _____ (Faites-le.)

Indice : Aidez-vous de votre cours de statistiques.

Il faut à présent vérifier si les deux calculs donnent le même résultat.

- 4. Placez-vous en cellule D4.
- 5. Tapez la formule suivante :

=SI(E1=E2;"Ce triangle est rectangle.";"Ce triangle n'est pas rectangle.")

Explication :

=SI (Condition ; Instruction 1 ; Instruction 2)

Le tableur vérifie si la condition est réalisée Le tableur exécute l'Instruction 1 si la condition <u>est</u> réalisée Le tableur exécute l'Instruction 2 si la condition <u>n'est pas</u> réalisée Si le triangle est rectangle (et uniquement dans ce cas), il faut faire calculer les mesures des angles aigus.

6. Placez-vous en cellule D6.

Q2: Complétez: En cellule D6, il faut taper: =SI(_______; "Premier angle aigu"; "")

7. En cellule D7, tapez la formule qui affichera le texte « Second angle aigu » uniquement si le triangle est rectangle.

- Q3 : Formule à taper en D7 : ______
- 8. En cellule E6 taper la formule suivante : =SI (E1=E2 ; DEGRES (ACOS (MIN (B1:B3) /MAX (B1:B3)));"")

DEGRES affiche l'angle en degrés	ACOS calcule l'angle	
	correspondant	
	au Cosinus	
	donné	

Q4 : Trouvez une formule astucieuse à taper en cellule E7 (Indice : les deux angles aigus du triangle rectangle sont complémentaires) :

9. Sur GeoGebra, construire le triangle indiqué, puis afficher les mesures de ses angles sur le dessin pour vérifier qu'elles correspondent à ce que le tableur a calculé.

Vous vous servirez des boutons suivants :

Segment créé par un point et une longueur Cercle (centre-rayon)	Q5 : Ecrire un texte décrivant les étapes de la construction (si vous manquez de place, ajoutez une		
Intersection entre deux objets	autre feuille):		
Segment entre deux points			
Angle			
2			